INTRODUCTION

This application note describes the communication between a microcontroller and MEAS Switzerland’s MS56XX, MS57xx and MS58xx pressure sensor modules series using SPI and I2C protocol. In these code examples we explain: microcontroller initialization, commands construction and calculation of pressure and temperature from the obtained data. For more information on specific pressure and temperature algorithm please refer to the specific sensor datasheet.

The code in these examples is developed for the ATMEL ATmega644p microcontroller. The compiler used is gcc from the WinAVR 20080610 bundle available freely on the Internet. All examples presented here can be implemented on any microcontroller with hardware implementation of the SPI and I2C protocol.

SPI PROTOCOL C-CODE EXAMPLE

Figure below shows an easy way to use sensors with the SPI bus. Please note a minimum of 100nF decoupling capacitor for the sensor and the PS pin (protocol select) connected to ground that defines the usage of the SPI protocol.

![Figure 1: Circuit diagram of the hardware used for the SPI C-code testing](image-url)
AN520 C-code example for MS56xx, MS57xx (except analog sensor),
and MS58xx series pressure sensors

/**
 * @file an520_SPI.c,v
 */
/**
 * Copyright (c) 2009 MEAS Switzerland
 */
/**
 * @brief This C code is for starter reference only. It is written for the
 * MEAS Switzerland MS56xx pressure sensor modules and Atmel Atmega644p
 * microcontroller.
 */
/**
 * @version 1.0 $Id: an520_SPI.c,v 1.0$
 */
/**
 * @todo
 */

// MACROS
#define TRUE 1
#define FALSE 0
#define F_CPU 4000000UL // 4 MHz XTAL
#define CMD_RESET 0x1E // ADC reset command
#define CMD_ADC_READ 0x00 // ADC read command
#define CMD_ADC_CONV 0x40 // ADC conversion command
#define CMD_ADC_D1 0x00 // ADC D1 conversion
#define CMD_ADC_D2 0x10 // ADC D2 conversion
#define CMD_ADC_256 0x00 // ADC OSR=256
#define CMD_ADC_512 0x02 // ADC OSR=512
#define CMD_ADC_1024 0x04 // ADC OSR=1024
#define CMD_ADC_2048 0x06 // ADC OSR=2056
#define CMD_ADC_4096 0x08 // ADC OSR=4096
#define CMD_PROM_RD 0xA0 // Prom read command
#define csb_hi() (_SFR_BYTE(PORTA) &= ~_BV(3)) // setting CSB low
#define csb_lo() (_SFR_BYTE(PORTA) |= _BV(3)) // setting CSB high

// INCLUDES
#include <stdio.h>
#include <util/delay.h>
#include <avr/io.h>
#include <math.h>

// DEFINITIONS
void spi_send(char cmd);
void cmd_reset(void);
unsigned long cmd_adc(char cmd);
unsigned int cmd_prom(char coef_num);
unsigned char crc4(unsigned int n_prom[]);

/***/
/* @brief send 8 bit using SPI hardware interface */
/**
 * @return 0
 */
/***/
void spi_send(char cmd)
{
 SPDR = cmd; // put the byte in the SPI hardware buffer and start sending
 while (bit_is_clear(SPSR, 7)); // wait that the data is sent
/**
 * @brief send reset sequence
 *
 * @return 0
 */

void cmd_reset(void)
{
 csb_lo(); // pull CSB low to start the command
 spi_send(CMD_RESET); // send reset sequence
 _delay_ms(3); // wait for the reset sequence timing
 csb_hi(); // pull CSB high to finish the command
}

/**
 * @brief preform adc conversion
 *
 * @return 24bit result
 */

unsigned long cmd_adc(char cmd)
{
 unsigned int ret;
 unsigned long temp=0;
 csb_lo(); // pull CSB low
 spi_send(CMD_ADC_CONV+cmd); // send conversion command
 switch (cmd & 0x0f) // wait necessary conversion time
 {
 case CMD_ADC_256 : _delay_us(900); break;
 case CMD_ADC_512 : _delay_ms(3); break;
 case CMD_ADC_1024: _delay_ms(4); break;
 case CMD_ADC_2048: _delay_ms(6); break;
 case CMD_ADC_4096: _delay_ms(10); break;
 }
 csb_hi(); // pull CSB high to finish the conversion
 csb_lo(); // pull CSB low to start new command
 spi_send(CMD_ADC_READ); // send ADC read command
 ret=SPDR;
 temp=65536*ret;
 spi_send(0x00); // send 0 to read 1st byte (MSB)
 ret=SPDR;
 temp=temp+256*ret;
 spi_send(0x00); // send 0 to read 2nd byte
 ret=SPDR;
 temp=temp+ret;
 spi_send(0x00); // send 0 to read 3rd byte (LSB)
 ret=SPDR;
 csb_hi(); // pull CSB high to finish the read command
 return temp;
}

/**
 * @brief Read calibration coefficients
 *
 * @return coefficient
 */
unsigned int cmd_prom(char coef_num)
{
 unsigned int ret;
 unsigned int rC=0;
 csb_lo(); // pull CSB low
 spi_send(CMD_PROM_RD+coef_num*2); // send PROM READ command
 spi_send(0x00); // send 0 to read the MSB
 ret=SPDR;
 rC=256*ret;
 spi_send(0x00); // send 0 to read the LSB
 ret=SPDR;
 rC=rC+ret;
 csb_hi(); // pull CSB high
 return rC;
}

//**
//! @brief calculate the CRC code for details look into CRC CODE NOTES
//! @return crc code
//**
unsigned char crc4(unsigned int n_prom[])
{
 int cnt; // simple counter
 unsigned int n_rem; // crc reminder
 unsigned int crc_read; // original value of the crc
 unsigned char n_bit;
 n_rem = 0x00;
 crc_read=n_prom[7]; //save read CRC
 n_prom[7]=(0xFF00 & (n_prom[7])); //CRC byte is replaced by 0
 for (cnt = 0; cnt < 16; cnt++) // operation is performed on bytes
 { // choose LSB or MSB
 if (cnt%2==1) n_rem ^= (unsigned short) ((n_prom[cnt>>1]) & 0x00FF);
 else n_rem ^= (unsigned short) (n_prom[cnt>>1]>>8);
 for (n_bit = 8; n_bit > 0; n_bit--)
 {
 if (n_rem & (0x8000))
 {
 n_rem = (n_rem << 1) ^ 0x3000;
 }
 else
 {
 n_rem = (n_rem << 1);
 }
 }
 }
 n_rem= (0x000F & (n_rem >> 12)); // final 4-bit reminder is CRC code
 n_prom[7]=crc_read; // restore the crc_read to its original place
 return (n_rem ^ 0x00);
}

//**
//! @brief main program
//! @return 0
//**
int main (void)
{
 unsigned long D1; // ADC value of the pressure conversion
 unsigned long D2; // ADC value of the temperature conversion
 unsigned int C[8]; // calibration coefficients
 double P; // compensated pressure value
 double T; // compensated temperature value
 double dT; // difference between actual and measured temperature
 double OFF; // offset at actual temperature
 double SENS; // sensitivity at actual temperature

 int i;
 unsigned char n_crc; // crc value of the prom

 DDRA = 0xFE; // prepare the port A
 DDRB = 0xBF; // SDO input
 DDRC = 0x00; // I2C pins as input
 DDRD = 0x82; // prepare the port D, RX out and TX out;
 PORTA = 0x10;
 PORTD = 0x20;

 // SPI settings: master, mode 0, fosc/4
 SPCR=(1<<SPE)|(1<<MSTR);
 // alternative SPI settings: master, mode 3, fosc/4
 // SPCR=(1<<SPE)|(1<<MSTR)|(1<<CPOL)|(1<<CPHA);

 cmd_reset(); // reset the module after powerup
 for (i=0;i<8;i++) { C[i]=cmd_prom(i);} // read calibration coefficients
 n_crc=crc4(C);

 while(TRUE) // loop without stopping
 {
 D1=cmd_adc(CMD_ADC_D1+CMD_ADC_256); // read uncompensated pressure
 D2=cmd_adc(CMD_ADC_D2+CMD_ADC_4096); // read uncompensated temperature

 // calculate 1st order pressure and temperature (MS5607 1st order algorithm)
 dT=D2-C[5]*pow(2,8);
 OFF=C[2]*pow(2,17)+dT*C[4]/pow(2,6);
 SENS=C[1]*pow(2,16)+dT*C[3]/pow(2,7);

 T=(2000+(dT*C[6])/pow(2,23))/100;
 P=((D1*SENS)/pow(2,21)-OFF)/pow(2,15))/100;

 // place to use P, T, put them on LCD, send them through RS232 interface...
 }

 return 0;
}
I2C PROTOCOL C-CODE EXAMPLE

Figure below shows an easy way to use sensors with the I2C bus. Please note a minimum of 100nF decoupling capacitor for the sensor and the PS pin (protocol select) connected to VDD that defines the usage of the I2C protocol. In this example the CSB is connected to ground which defines the I2C address to 0xEE.

Figure 2: Circuit diagram of the hardware used for the I2C C-code testing

```c
//! @file an520_I2C.c,v
//!
//! Copyright (c) 2009 MEAS Switzerland
//!
//! @brief This C code is for starter reference only. It is written for the
//! MEAS Switzerland MS56xx pressure sensor modules and Atmel Atmega644p
//! microcontroller.
//!
//! @version 1.0 $Id: an520_I2C.c,v 1.0
//!
//! @todo
```
//____ MACROS

#define TRUE 1
#define FALSE 0

#define F_CPU 4000000UL // 4 MHz external XTAL
#define SCL_CLOCK 100000L // I2C clock in Hz
#define ADDR_W 0xEE // Module address write mode
#define ADDR_R 0xEF // Module address read mode

#define CMD_RESET 0x1E // ADC reset command
#define CMD_ADC_READ 0x00 // ADC read command
#define CMD_ADC_CONV 0x40 // ADC conversion command
#define CMD_ADC_D1 0x00 // ADC D1 conversion
#define CMD_ADC_D2 0x10 // ADC D2 conversion
#define CMD_ADC_256 0x00 // ADC OSR=256
#define CMD_ADC_512 0x02 // ADC OSR=512
#define CMD_ADC_1024 0x04 // ADC OSR=1024
#define CMD_ADC_2048 0x06 // ADC OSR=2048
#define CMD_ADC_4096 0x08 // ADC OSR=4096
#define CMD_PROM_RD 0xA0 // Prom read command

//____ INCLUDES

#include <stdio.h>
#include <util/delay.h>
#include <util/twi.h>
#include <avr/io.h>
#include <math.h>

//_____ DEFINITIONS

unsigned char i2c_start(unsigned char address);
void i2c_stop(void);
unsigned char i2c_write(unsigned char data);
unsigned char i2c_readAck(void);
unsigned char i2c_readNak(void);
void cmd_reset(void);
unsigned long cmd_adc(char cmd);
unsigned int cmd_prom(char coef_num);
unsigned char crc4(unsigned int n_prom[]);

//**
//! @brief send I2C start condition and the address byte
//! @return 0
//**
unsigned char i2c_start(unsigned char address) {
 unsigned char twst;
 TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN); // send START condition
 while(!(TWCR & (1<<TWINT))); // wait until transmission completed
 twst = TW_STATUS & 0xF8; // check value of TWI Status Register. Mask prescaler bits.
 if ((twst != TW_START) && (twst != TW_REP_START)) return 1;
 TWDR = address; // send device address
 TWCR = (1<<TWINT) | (1<<TWEN); // wait until transmission completed and ACK/NACK has been received
}
while(!(TWCR & (1<<TWINT)));
twst = TW_STATUS & 0xF8;
// check value of TWI Status Register. Mask prescaler bits.
if ((twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK)) return 1;
return 0;
}

/***/
/*! @brief send I2C stop condition

 @return none
/***/
void i2c_stop(void)
{
 /* send stop condition */
 TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
 // wait until stop condition is executed and bus released
 while(TWCR & (1<<TWSTO)); //THIS MAKES PROBLEM FOR IS2402
}

/***/
/*! @brief send I2C stop condition

 @return 0
/***/
unsigned char i2c_write(unsigned char data)
{
 unsigned char twst;
 TWDR = data; // send data to the previously addressed device
 TWCR = (1<<TWINT) | (1<<TWEN);
 while(!(TWCR & (1<<TWINT))); // wait until transmission completed
 twst = TW_STATUS & 0xF8; // check value of TWI Status Register. Mask prescaler bits
 if(twst != TW_MT_DATA_ACK) return 1;
 return 0;
}

/***/
/*! @brief read I2C byte with acknowledgment

 @return read byte
/***/
unsigned char i2c_readAck(void)
{
 TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
 while(!((TWCR & (1<<TWINT))));
 return TWDR;
}

/***/
/*! @brief read I2C byte without acknowledgment

 @return read byte
/***/
unsigned char i2c_readNak(void)
{
 TWCR = (1<<TWINT) | (1<<TWEN);
 while(!((TWCR & (1<<TWINT))));
 return TWDR;
}
//**
//! @brief send command using I2C hardware interface
//! @return none
//**
void i2c_send(char cmd)
{
 unsigned char ret;

 ret = i2c_start(ADDR_W); // set device address and write mode
 if (ret)
 {// failed to issue start condition, possibly no device found */
 i2c_stop();
 }
 else
 {// issuing start condition ok, device accessible
 ret = i2c_write(cmd);
 i2c_stop();
 }
}

//**
//! @brief send reset sequence
//! @return none
//**
void cmd_reset(void)
{
 i2c_send(CMD_RESET); // send reset sequence
 _delay_ms(3); // wait for the reset sequence timing
}

//**
//! @brief preform adc conversion
//! @return 24bit result
//**
unsigned long cmd_adc(char cmd)
{
 unsigned int ret;
 unsigned long temp=0;

 i2c_send(CMD_ADC_CONV+cmd); // send conversion command
 switch (cmd & 0x0f) // wait necessary conversion time
 {
 case CMD_ADC_256 : _delay_us(900); break;
 case CMD_ADC_512 : _delay_ms(3); break;
 case CMD_ADC_1024: _delay_ms(4); break;
 case CMD_ADC_2048: _delay_ms(6); break;
 case CMD_ADC_4096: _delay_ms(10); break;
 }
 i2c_send(CMD_ADC_READ);
 ret = i2c_start(ADDR_R); // set device address and read mode
 if (ret)
 {//failed to issue start condition, possibly no device found
 i2c_stop();
 }
 else
 {//issuing start condition ok, device accessible
 ret = i2c_readAck(); // read MSB and acknowledge
 temp=65536*ret;
 }
}
```c
ret = i2c_readAck();    // read byte and acknowledge
temp=temp+256*ret;
ret = i2c_readNak();   // read LSB and not acknowledge
temp=temp+ret;
i2c_stop();     // send stop condition
}
return temp;
}

//********************************************************
//! @brief Read calibration coefficients
//! @return coefficient
//********************************************************
unsigned int cmd_prom(char coef_num)
{
    unsigned int ret;
    unsigned int rC=0;
i2c_send(CMD_PROM_RD+coef_num*2);  // send PROM READ command
ret = i2c_start(ADDR_R);         // set device address and read mode
if ( ret )
{///<failed to issue start condition, possibly no device found
i2c_stop();
}
else
{///<issuing start condition ok, device accessible
ret = i2c_readAck();             // read MSB and acknowledge
rC=256*ret;
ret = i2c_readNak();   // read LSB and not acknowledge
rC=rC+ret;
i2c_stop();
}
return rC;
}

//********************************************************
//! @brief calculate the CRC code
//! @return crc code
//********************************************************
unsigned char crc4(unsigned int n_prom[])
{
    int cnt;     // simple counter
unsigned int n_rem;    // crc reminder
unsigned int crc_read;   // original value of the crc
unsigned char  n_bit;
    n_rem = 0x00;
crc_read=n_prom[7];    //save read CRC
n_prom[7]=(0xFF00 & (n_prom[7]));  //CRC byte is replaced by 0
for (cnt = 0; cnt < 16; cnt++)      // operation is performed on bytes
{///< choose LSB or MSB
    if (cnt%2==1) n_rem ^= (unsigned short) ((n_prom[cnt>>1]) & 0x00FF);
else n_rem ^= (unsigned short) (n_prom[cnt>>1]>>8);
for (n_bit = 8; n_bit > 0; n_bit--)
{///< operation is performed on bytes
    if (n_rem & (0x8000))
    {n_rem = (n_rem << 1) ^ 0x3000;
```

AN520 C-code example for MS56xx, MS57xx (except analog sensor), and MS58xx series pressure sensors

```c
else
{
    n_rem = (n_rem << 1);
}

n_rem=  (0x000F & (n_rem >> 12));  // final 4-bit reminder is CRC code
n_prom[7]=crc_read;   // restore the crc_read to its original place
return (n_rem ^ 0x0);
}

//********************************************************
//! @brief main program
//! @return 0
//********************************************************
int main (void)
{
    unsigned long D1;    // ADC value of the pressure conversion
    unsigned long D2;    // ADC value of the temperature conversion
    unsigned int C[8];   // calibration coefficients
    double P;   // compensated pressure value
    double T;   // compensated temperature value
    double dT;   // difference between actual and measured temperature
    double OFF;   // offset at actual temperature
    double SENS;   // sensitivity at actual temperature
    int i;
    unsigned char n_crc; // crc value of the prom

    // setup the ports
    DDRA  = 0xFE; // SPI pins as input
    DDRB  = 0x0F;   // SPI pins as input
    DDRC  = 0x03;   // I2C pins as output
    DDRD  = 0x82;   // RS out and tx out;
    PORTA = 0x1F;   // I2C pin high
    PORTB = 0xF0;
    PORTC = 0x01;
    PORTD = 0x00;

    // initialize the I2C hardware module
    TWSR = 0;                          // no prescaler
    TWBR = ((F_CPU/SCL_CLOCK)-16)/2;   // set the I2C speed

    D1=0;
    D2=0;
    cmd_reset(); // reset IC
    for (i=0;i<8;i++) { C[i]=cmd_prom(i); }  // read coefficients
    n_crc=crc4(C);     // calculate the CRC
    for(;;)     // loop without stopping
    {
        D2=cmd_adc(CMD_ADC_D2+CMD_ADC_4096); // read D2
        D1=cmd_adc(CMD_ADC_D1+CMD_ADC_4096); // read D1

        // calculate 1st order pressure and temperature (MS5607 1st order algorithm)
        dT=D2-C[5]*pow(2,8);
        OFF=C[2]*pow(2,17)+dT*C[4]/pow(2,6);
        SENS=C[1]*pow(2,16)+dT*C[3]/pow(2,7);
        T=(2000+dT*C[6])/-OFF/pow(2,23))/100;
        P=((D1*SENS)/pow(2,21)-OFF)/pow(2,15))/100;
    }

```


// place to use P, T, put them on LCD, send them trough RS232 interface...
}
return 0;
}

CRC CODE NOTES

The CRC code is calculated and written in factory with the LSB byte in the prom `n_prom[7]` set to 0x00 (see Coefficient table below). It is thus important to clear those bytes from the calculation buffer before proceeding with the CRC calculation itself:

```
n_prom[7] = (0xFF00 & (n_prom[7])); //CRC byte is replaced by 0
```

As a simple test of the CRC code, the following coefficient table could be used:

```
unsigned int nprom[] = {0x3132,0x3334,0x3536,0x3738,0x3940,0x4142,0x4344,0x4500};
```

the resulting calculated CRC should be 0xB.

<table>
<thead>
<tr>
<th>Add</th>
<th>DB 15</th>
<th>DB 14</th>
<th>DB 13</th>
<th>DB 12</th>
<th>DB 11</th>
<th>DB 10</th>
<th>DB 9</th>
<th>DB 8</th>
<th>DB 7</th>
<th>DB 6</th>
<th>DB 5</th>
<th>DB 4</th>
<th>DB 3</th>
<th>DB 2</th>
<th>DB 1</th>
<th>DB 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16 bit reserved for manufacturer</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Coefficient 1 (16 bit unsigned)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Coefficient 2 (16 bit unsigned)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Coefficient 3 (16 bit unsigned)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Coefficient 4 (16 bit unsigned)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Coefficient 5 (16 bit unsigned)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Coefficient 6 (16 bit unsigned)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0 0 0 0 CRC (0x0)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Memory PROM mapping
AN520 C-code example for MS56xx, MS57xx (except analog sensor), and MS58xx series pressure sensors

REVISION HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Type of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.06.2009</td>
<td>000</td>
<td>Initial document</td>
</tr>
<tr>
<td>12.01.2010</td>
<td>001</td>
<td>Change to MEAS logo and layout; addition of CRC code notes</td>
</tr>
<tr>
<td>22.03.2011</td>
<td>002</td>
<td>Modification of the title, addition of: "MS57xx except analog sensor MS58xx series" Some characters were put in bold for more readability</td>
</tr>
<tr>
<td>20.06.2011</td>
<td>003</td>
<td>Insertion of the mention TM in the logo, modification of Shenzhen zip code</td>
</tr>
<tr>
<td>09.08.2011</td>
<td>004</td>
<td>Modification of the title from "AN520 C-code example for MS56xx, MS57xx except analog sensor and MS58xx series pressure sensors" to "AN520 C-code example for MS56xx, MS57xx (except analog sensor), and MS58xx series pressure sensors". Page 6, change picture in figure 2, one resistor on SDA and one on SCL. Page 7, change “ADDR_W 0xEF” in “ADDR_W 0xEE”</td>
</tr>
</tbody>
</table>

FACTORY CONTACTS

NORTH AMERICA
Measurement Specialties
45738 Northport Loop West
Fremont, CA 94538
Tel: +1 800 767 1888
Fax: +1 510 498 1578
e-mail: pfg.cs.amer ch@meas-spec.com
Website: www.meas-spec.com

EUROPE
MEAS Switzerland Sàrl
Ch. Chapons-des-Prés 11
CH-2022 Bevaix
Tel: +41 32 847 9550
Fax: +41 32 847 9569
e-mail: sales.ch@meas-spec.com
Website: www.meas-spec.com

ASIA
Measurement Specialties (China), Ltd.
No. 26 Langshan Road
Shenzhen High-Tech Park (North)
Nanshan District, Shenzhen, 518057
China
Tel: +86 755 3330 5088
Fax: +86 755 3330 5099
e-mail: pfg.cs.asia@meas-spec.com
Website: www.meas-spec.com

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer’s technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.